- (Exam Topic 1)
You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?
Correct Answer:C
- (Exam Topic 6)
An organization maintains a Google BigQuery dataset that contains tables with user-level datA. They want to expose aggregates of this data to other Google Cloud projects, while still controlling access to the user-level data. Additionally, they need to minimize their overall storage cost and ensure the analysis cost for other projects is assigned to those projects. What should they do?
Correct Answer:D
Reference: https://cloud.google.com/bigquery/docs/access-control
- (Exam Topic 5)
Which of these rules apply when you add preemptible workers to a Dataproc cluster (select 2 answers)?
Correct Answer:BD
The following rules will apply when you use preemptible workers with a Cloud Dataproc cluster: Processing only—Since preemptibles can be reclaimed at any time, preemptible workers do not store data.
Preemptibles added to a Cloud Dataproc cluster only function as processing nodes.
No preemptible-only clusters—To ensure clusters do not lose all workers, Cloud Dataproc cannot create preemptible-only clusters.
Persistent disk size—As a default, all preemptible workers are created with the smaller of 100GB or the primary worker boot disk size. This disk space is used for local caching of data and is not available through HDFS.
The managed group automatically re-adds workers lost due to reclamation as capacity permits. Reference: https://cloud.google.com/dataproc/docs/concepts/preemptible-vms
- (Exam Topic 5)
Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)
Correct Answer:AB
Can we teach computers to learn like humans do, by combining the power of memorization and generalization? It's not an easy question to answer, but by jointly training a wide linear model (for memorization) alongside a deep neural network (for generalization), one can combine the strengths of both to bring us one step closer. At Google, we call it Wide & Deep Learning. It's useful for generic large-scale regression and classification problems with sparse inputs (categorical features with a large number of possible feature values), such as recommender systems, search, and ranking problems.
Reference: https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html
- (Exam Topic 6)
You have developed three data processing jobs. One executes a Cloud Dataflow pipeline that transforms data uploaded to Cloud Storage and writes results to BigQuery. The second ingests data from on-premises servers and uploads it to Cloud Storage. The third is a Cloud Dataflow pipeline that gets information from third-party data providers and uploads the information to Cloud Storage. You need to be able to schedule and monitor the execution of these three workflows and manually execute them when needed. What should you do?
Correct Answer:D
- (Exam Topic 2)
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?
Correct Answer:B