A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:
* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.
* Support event-driven ETL pipelines.
* Provide a quick and easy way to understand metadata. Which approach meets trfese requirements?
Correct Answer:A
A company that manufactures mobile devices wants to determine and calibrate the appropriate sales price for its devices. The company is collecting the relevant data and is determining data features that it can use to train machine learning (ML) models. There are more than 1,000 features, and the company wants to determine the primary features that contribute to the sales price.
Which techniques should the company use for feature selection? (Choose three.)
Correct Answer:CDF
A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.
Which next step is MOST likely to improve the data ingestion rate into Amazon S3?
Correct Answer:C
A Machine Learning Specialist is working with a media company to perform classification on popular articles from the company's website. The company is using random forests to classify how popular an article will be before it is published A sample of the data being used is below.
Given the dataset, the Specialist wants to convert the Day-Of_Week column to binary values. What technique should be used to convert this column to binary values.
Correct Answer:B
A company needs to quickly make sense of a large amount of data and gain insight from it. The data is in different formats, the schemas change frequently, and new data sources are added regularly. The company wants to use AWS services to explore multiple data sources, suggest schemas, and enrich and transform the data. The solution should require the least possible coding effort for the data flows and the least possible infrastructure management.
Which combination of AWS services will meet these requirements?
Correct Answer:A
A company is converting a large number of unstructured paper receipts into images. The company wants to create a model based on natural language processing (NLP) to find relevant entities such as date, location, and notes, as well as some custom entities such as receipt numbers.
The company is using optical character recognition (OCR) to extract text for data labeling. However, documents are in different structures and formats, and the company is facing challenges with setting up the manual workflows for each document type. Additionally, the company trained a named entity recognition (NER) model for custom entity detection using a small sample size. This model has a very low confidence score and will require retraining with a large dataset.
Which solution for text extraction and entity detection will require the LEAST amount of effort?
Correct Answer:C